Low-Frequency, Spread-Spectrum EconOscillator

General Description

The DS1090 is a low-cost, dithered oscillator intended to be used as an external clock for switched-mode power supplies and other low-frequency applications. The dithering or sweeping function reduces peak-radiated emissions from the power supply at its fundamental frequency, as well as harmonic frequencies. The device consists of a resistor-programmed master oscillator, factory-programmed clock prescaler, and a pinprogrammed dither circuit. These features allow the DS1090 to be used in applications where a spreadspectrum clock is desired to reduce radiated emissions. A combination of factory-set prescalers and external resistor allows for output frequencies ranging from 125 kHz to 8 MHz . Both dither frequency and dither percentage are set using control pins.

Applications
Switched-Mode Power Supplies
Servers
Printers
Embedded Microcontrollers
Industrial Controls
Automotive Applications

Features

- Low-Cost, Spread-Spectrum EconOscillator ${ }^{\text {TM }}$
- Simple User Programming
- Output Frequency Programmable from 125kHz to 8 MHz
- Dither Percentage Programmable from 0\% to 8\%
- Dither Rate Programmable (fmosc / 512, 1024, 2048, or 4096)
-3.0V to 5.5V Single-Supply Operation
- CMOS/TTL-Compatible Output
- Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Ordering Information

PART	OUTPUT FREQUENCY RANGE	PRESCALER	PIN- PACKAGE
DS1090U-1+	4 MHz to 8 MHz	1	$8 \mu \mathrm{SOP}$
DS1090U- $2+$	2 MHz to 4 MHz	2	$8 \mu \mathrm{SOP}$
DS1090U-4+	1 MHz to 2 MHz	4	$8 \mu \mathrm{SOP}$
DS1090U-8+	500 kHz to	8	$8 \mu \mathrm{SOP}$
DS1090U-16+ +250 kHz to 500 kHz	16	$8 \mu \mathrm{SOP}$	
DS1090U-32+	125 kHz to 250 kHz	32	$8 \mu \mathrm{SOP}$

Add "T" for Tape \& Reel orders
Pin Configuration

EconOscillator is a trademark of Dallas Semiconductor.

Low-Frequency, Spread-Spectrum EconOscillator

ABSOLUTE MAXIMUM RATINGS

Voltage Range on V_{CC} Relative to Ground-0.5V to +6.0 V Voltage Range on Input Pins

Relative to Ground. \qquad -0.5 V to $\left(\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}\right)$ not to exceed 6.0 V

Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range-55 ${ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Soldering Temperature See IPC/JEDEC J-STD-020A Specification

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED DC OPERATING CONDITIONS

($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
Supply Voltage	$V_{C C}$	(Note 1)	3.0	5.5	V
Input Logic 1 (J0, J1, JC0, JC1)	V_{IH}		$\begin{aligned} & 0.7 x \\ & V_{C C} \end{aligned}$	$\begin{gathered} V_{C C}+ \\ 0.3 \end{gathered}$	V
Input Logic 0 (J0, J1, JC0, JC1)	VIL		-0.3	$\begin{gathered} +0.3 x \\ V_{C C} \\ \hline \end{gathered}$	V

DC ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	IcC	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{RSET}=40 \mathrm{k} \Omega$		1.4		mA
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{RSET}=40 \mathrm{k} \Omega$		1.7	3	
High-Level Output Voltage (OUT)	VOH	$\mathrm{IOH}=-4 \mathrm{~mA}$	2.4			V
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{min}$				
Low-Level Output Voltage (OUT)	VOL	$\mathrm{IOL}=4 \mathrm{~mA}$			0.4	V
High-Level Input Current (JO, J1, JC0, JC1)	$\mathrm{IIH}^{\text {H }}$	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\text {CC }}$			+1.0	$\mu \mathrm{A}$
Low-Level Input Current (JO, J1, JC0, JC1)	IIL	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	-1.0			$\mu \mathrm{A}$
Resistor Current	IRES	$\mathrm{V}_{C C}=\max$			150	$\mu \mathrm{A}$

\qquad

Low-Frequency, Spread-Spectrum EconOscillator

AC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Internal Master Oscillator Frequency	fmosc		4.0		8.0	MHz
Output Frequency Tolerance	Δ fout	$\begin{aligned} & V_{C C}=3.3 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	-3.0		+3.0	\%
Voltage Frequency Variation	Δ fout	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{RSET}=60 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \text { (Notes } 2,3 \text {) } \end{aligned}$	-0.5		+0.5	\%
		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{RSET}=60 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \text { (Notes } 2,3 \text {) } \end{aligned}$	-1.25		+1.25	
Temperature Frequency Variation	Δ fout	$V_{C C}=3.3 V$ (Notes 2, 3, 4)	-2.0		+2.0	\%
Peak-to-Peak Dither (3б) (Note 5)		J0 = GND, J1 = GND		0		\%
		$\mathrm{J} 0=\mathrm{V}_{\mathrm{CC}}, \mathrm{J} 1=\mathrm{GND}$		2		
		$\mathrm{J} 0=$ GND, J 1 = VCC		4		
		$\mathrm{J} 0=\mathrm{V}_{\mathrm{CC}}, \mathrm{J} 1=\mathrm{V}_{\mathrm{CC}}$		8		
Power-Up Time	$\begin{gathered} \text { tPOR + } \\ \text { tSTAB } \end{gathered}$	(Note 6)		0.1	0.5	ms
Load Capacitance	CL	(Note 7)			30	pF
Output Duty Cycle		4 MHz to $8 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 3)	45		55	\%
		$<4 \mathrm{MHz}$ (Note 4)		50		
Output Rise/Fall Time	t_{R}, t_{F}	$C_{L}=15 \mathrm{pF}$			20	ns

Note 1: All voltages referenced to ground.
Note 2: This is the change observed in output frequency due to changes in temperature or voltage.
Note 3: See the Typical Operating Characteristics section.
Note 4: Parameter is guaranteed by design and is not production tested.
Note 5: This is a percentage of the output period. Parameter is characterized but not production tested. This can be varied from 0% to 8%.
Note 6: This indicates the time between power-up and the outputs becoming active. An on-chip delay is intentionally introduced to allow the oscillator to stabilize. ISTAB is equivalent to ~ 500 clock cycles and is dependent upon the programmed output frequency.
Note 7: Output voltage swings can be impaired at high frequencies combined with high output loading.

Low-Frequency, Spread-Spectrum EconOscillator

Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

OUTPUT FREQUENCY vs. SUPPLY VOLTAGE

\qquad

Low-Frequency, Spread-Spectrum EconOscillator

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

FREQUENCY ERROR
vs. SUPPLY VOLTAGE (FROM 3.3V)

DUTY CYCLE
vs. TEMPERATURE

FREQUENCY ERROR
vs. TEMPERATURE (FROM $\mathbf{+ 2 5}^{\circ} \mathrm{C}$)

RESISTOR CURRENT
vs. RESISTOR VALUE

Low-Frequency, Spread-Spectrum EconOscillator

Pin Description
\qquad

PIN	NAME	FUNCTION
1	OUT	Oscillator Output
2	RSET	Frequency Control Resistor Input
3	VCC	Positive-Supply Terminal
4	GND	Ground
5	J0	Dither Amplitude (Percentage) Inputs
(see Table 2)	J1	
7	JC0	Dither Rate Divisor Inputs (see Table 1)
8	JC1	

Block Diagram

\qquad

Low-Frequency, Spread-Spectrum EconOscillator

Figure 1. Master Oscillator Frequency

Detailed Description

The DS1090 is a center-dithered, spread-spectrum silicon oscillator for use as an external clock in reducedEMI applications. With a combination of factoryprogrammed prescalers and a user-selected external resistor, output frequencies from 125 kHz to 8 MHz can be achieved. The output center frequency can be dithered by selecting the desired dither rate and amplitude with discrete inputs $\mathrm{J}, \mathrm{J} 1, \mathrm{JCO}$, and JC 1 .
The DS1090 contains four basic circuit blocks: master oscillator, factory-programmed prescaler, dither generator, and the voltage-bias circuit that provides the feedback path to the master oscillator for frequency control and dithering functions.

Master Oscillator

The master oscillator is programmable in the application by the use of an external resistor (RSET) tied to ground (GND). Resistor values of $45 \mathrm{k} \Omega$ to $91 \mathrm{k} \Omega$ vary the square-wave output frequency of the voltage-controlled master oscillator (fMOSC) from 8 MHz down to 4 MHz (see Figure 1).
The master oscillator (Hz) frequency can be stated as

$$
\mathrm{f}_{\mathrm{MOSC}} \cong \frac{3.6461 \mathrm{E}+11}{\text { Resistor }}
$$

Figure 2. Center Frequency Dither Diagram
Factory-Programmed Prescaler
The prescaler divides the frequency of the master oscillator by $1,2,4,8,16$, or 32 to generate the squarewave output clock (fosc). This divisor is factory-set and is an ordering option.

Dither Generator

Spread-spectrum functionality is achieved by a userconfigurable divider (determines dither rate), a triangle generator, and a user-configurable dither amplitude circuit (see Block Diagram).
The input to the triangle-wave generator is derived from the internal master oscillator and is fed through a userconfigurable divider. The settings of control pins JC0 and JC1 determine this dither rate divisor setting (see Table 1), dividing the master clock by $4,8,16$, or 32 . The clock signal is further divided by 128 in the triangle-wave generator, which results in a trianglewave signal of either $1 / 512$ th, $1 / 1024$ th, $1 / 2048$ th, or $1 / 4096$ th of the master oscillator (fMOD), depending upon the user's divisor setting.
The dithering frequency can be also expressed as the result of

$$
f_{\text {MOD }}=\frac{f_{\text {MOSC }}}{\text { Divisor } \times 128}
$$

where Divisor is $4,8,16$, or 32 .
Table 1. Dither Rate Divisor Settings

JC1	JC0	DITHERING PERCENTAGE (fMOSc/n)	DIVISOR SETTING
0	0	$\mathrm{~F}_{\text {MOSC }} / 512$	4
0	1	$\mathrm{~F}_{\text {MOSC }} / 1024$	8
1	0	$f_{\text {MOSC }} / 2048$	16
1	1	$f_{\text {MOSC }} / 4096$	32

Low-Frequency, Spread-Spectrum EconOscillator

Table 2. Dither Percentage Setting

J1	J0	DITHER PERCENT (\%)
0	0	0
0	1	2
1	0	4
1	1	8

Dither Percentage Settings
Dither amplitude (measured in percent \pm from the master oscillator center frequency) is set using input pins J 0 and J 1 . This circuit uses a sense current from the master oscillator bias circuit to adjust the amplitude of the triangle-wave signal to a voltage level that modulates the master oscillator to a percentage of its resis-tor-set center frequency. This percentage is set in the end application to be $0 \%, 2 \%, 4 \%$, or 8% (see Table 2).

Application Information

Pin Connection

The DS1090 is intended to provide a fixed-frequency, dithered clock to be used as a clock driver for DC-DC converters and other applications requiring a lowfrequency EMI-reduced clock oscillator. All control pins must be biased per Tables 1 and 2 for proper operation for the individual application's requirements. RSET must be tied to ground (GND) by a customer-supplied resistor.

Rset Resistor Selection
The value of the resistor used to select the desired frequency is calculated using the formula in the Master Oscillator section (see also Figure 1). It is recommended to use, at minimum, a 1\%-tolerance, 1/16th-watt component with a temperature coefficient that satisfies the overall stability requirements desired of the end-equipment. Place the external RSET resistor as close as possible to minimize lead inductance.

Power-Supply Decoupling

To achieve best results, it is highly recommended that a decoupling capacitor is used on the IC power-supply pins. Typical values of decoupling capacitors are $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$. Use a high-quality, ceramic, surface-mount capacitor, and mount it as close as possible to the V_{CC} and GND pins of the IC to minimize lead inductance.

Chip Information
TRANSISTOR COUNT: 1883 SUBSTRATE CONNECTED TO GROUND

Package Information

For the latest package outline information, go to www.maxim-ic.com/DallasPackInfo.

[^0]8

[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

